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A B S T R A C T

Planning for management actions that address threats to biodiversity is important for securing its long term
persistence. However, systematic conservation planning (SCP) has traditionally overlooked this aspect and just
focused on identifying priority areas without any recommendation on actions needed. This paper develops a
mixed integer mathematical programming (MIP) approach for the multi-action management planning problem
(MAMP), where the goal is to find an optimal combination of management actions that abate threats, in an
efficient way while accounting for connectivity. An extended version of the MAMP model (MAMP-E) is also
proposed that adds an expression for minimizing fragmentation between different actions. To evaluate the ef-
ficiency of the two models, they were applied to a case study corresponding to a large area of the Mitchell River
in Northern Australia, where 45 species of freshwater fish are exposed to the presence of four threats. The
evaluation compares our exact MIP approach with the conservation planning software Marxan and the heuristic
approach developed in Cattarino et al. (2015). The results obtained show that our MIP models have three
advantages over their heuristic counterparts: shorter execution times, higher solutions quality, and a solution
quality guarantee. Hence, the proposed MIP methodology provides a more effective framework for addressing
the multi-action conservation problem.

1. Introduction and motivation

We are currently experiencing a global biodiversity crisis that needs
urgent attention (Díaz et al., 2019). Despite the targets set in international
conventions (e.g., Aichi targets of the Convention on Biological Diversity
(Leadley et al., 2017), there has been little improvement and global bio-
diversity continues to decline (WWF, 2018). Added to the aforementioned
is the fact that funding for conservation actions is typically limited, so it is
essential the available financial resources are employed efficiently. Con-
servation planning aims to identify areas where to focus conservation
efforts to ensure the long-term persistence of biodiversity. Systematic
conservation planning (SCP, Groom et al., 2006, chapter 14; Wiersma and
Sleep, 2016) is commonly used for designing efficient networks of pro-
tected areas (PAs) where to focus conservation efforts on.

To ensure the long-term persistence of biodiversity, systematic
conservation planning has incorporated different elements into the

design of management plans, such as spatial aspects (Williams et al.,
2005; Moilanen et al., 2011; Hermoso et al., 2015; Liang et al., 2018),
climate change measures (Jones et al., 2016; Wang et al., 2017), or the
temporal dynamics of species (Runge et al., 2016). Spatial aspects such
as connectivity not only influence the persistence of species, but also
the overall ecological functioning of protected areas and the ability to
manage them effectively (Diamond, 1975). This is usually incorporated
through mathematical modification in conservation objectives (see
Williams et al., 2004; Watts et al., 2009).

Conservation planning is usually addressed following a dichot-
omous approach, i.e., whether or not to select a given site, or sites, for
inclusion in a protected area (Possingham et al., 1993). This approach
generally results in the identification of a minimum set of areas that
help achieve representation targets in an efficient way through the use
of software such as Marxan (Watts et al., 2009) or Zonation (Lehtomäki
and Moilanen, 2013). However, traditional SCP methods have focused,
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though, on identifying priority areas but overlooked the prioritization
of management actions required to ensure the long term persistence of
biodiversity (Possingham et al., 1993; Game et al., 2013; Carwardine
et al., 2012). The identification of management actions within these
protected areas is often disconnected from previous selection decisions,
resulting in potentially inefficient solutions (Cattarino et al., 2015).
Multiple studies have noted the importance of prioritizing alternative
management actions to tackle specific threats; that provide optimized
recommendations on specific actions to be implemented. These alter-
natives represent more efficient solutions as management actions are
planned upfront and not in an ad hoc fashion (see Wilson et al., 2007;
Auerbach et al., 2014; Cattarino et al., 2016). Cattarino et al. (2015)
developed a multi-action model that integrates site and action selection
by performing the two steps simultaneously; thus, generating highly
efficient choices of specific conservation actions that produce better
results than Marxan. The authors apply a heuristic approach (specifi-
cally simulated annealing), similar to the one used in Marxan, to solve
the problem. Nonetheless, heuristic approaches do not allow estimates
of the quality of solutions, which is essential for measuring the effi-
ciency of the attained management plans.

Different approaches have been used to address the prioritization
problem in systematic conservation planning. For example, greedy al-
gorithm heuristics, mathematical optimization techniques such as
linear programming (LP) and mixed integer linear programming (MIP),
and greedy randomized heuristics such as simulated annealing
(Moilanen, 2005). Early algorithmic strategies used iterative methods
(e.g., Kirkpatrick, 1983), and MIP formulations spread rapidly as a
prioritization tool (see Cocks and Baird, 1989; Sarkar, 2012). The main
difficulty in using approaches based on mathematical programming is
the high computational complexity of some models, which incorporate
the spatial aspects of reserves with strong restrictions (see, e.g., Runge
et al., 2016; Billionnet, 2013; Önal et al., 2016). Nevertheless, some of
the latest studies, such as (Beyer et al., 2016), have recommended
avoiding the overuse of heuristics and employing exact methods
wherever possible. The authors cite recent advances in mathematical
programming approaches that have obtained optimal results for a wide
variety of problem sizes with shorter execution times than those
achieved by Marxan, which uses simulated annealing.

The fact that the prioritization approach in conservation action
management has proven to be more efficient than dichotomous selec-
tion policies such as Marxan (Cattarino et al., 2015), together with the
success of recent strategies that incorporate mathematical program-
ming as in Beyer et al. (2016), points up the need for a MIP model
design that brings to the problem of multiple conservation action as-
signment the technique's advantages in terms of its flexibility of for-
mulation and the ability to determine solution quality.

Here, we develop a multi-action prioritization approach by using a
MIP formulation, which incorporates connectivity considerations in the
spatial prioritization of management actions. We also provide an ex-
tended version of our model by adding an expression for connectivity
different management actions. In addition, we develop a procedure for
the linearization of the proposed models so that they can be solved
using classical integer linear programming tools. The two versions are
then applied to a case study of the prioritization of conservation actions
for addressing riverine threats to 45 fish species in Australia's Mitchell
River catchment. To evaluate the proposed approach, we explicitly
compared it with two previous heuristic approaches: the conservation
planning software Marxan and the heuristic approach developed in
Cattarino et al. (2015). We expect the MIP approach to outperform
heuristics in the quality of solutions and time of computing.

2. Methods

2.1. The multi-action threat management planning problem (MAMP)

In short, for a given territory and a given set of endangered species,

the multi-action threat management planning problem corresponds to
the problem of selecting (i) sites within this territory, known as
planning units (hereafter simply “units”), and (ii) a set of actions to
address the threats (against the endangered species) that occur in
those units.

The aim is to find an management plan that minimizes the cost of
implementing the proposed actions, satisfying an ecological objec-
tive, defined as the area of each species occurrences where they are
free of threats, while at the same time, seeking for a plan to be spa-
tially functional, by minimizing the spatial fragmentation of the se-
lected units. Furthermore, no action may be selected without first
designating the corresponding unit for monitoring to confirm that a
threat is indeed present. In the remainder of this subsection we will
present the mathematical notation for the formulation of the multi-
action threat management planning problem using mixed integer
programming.

2.1.1. Notation and preliminaries
Let I be a set of planning units such that each i∈ I is a basic terri-

torial division. Also, let s be the set of all species and Si ⊆ S the set of all
species that inhabit unit i∈ I. In addition, let K be the set of all threats,
Ki ⊆ K the set of all threats that inhabit i∈ I and Ks ⊆K the set of all
threats that affect species s∈ S. We assume that there exists only one
action that can abate a given threat k∈ K, and that upon implementing
this action in some unit i∈ I, the corresponding threat k in i is com-
pletely abated, with k∈ Ki.

To represent the economic component in our model, we define
×c I K
0

| | | | as the actions cost vector where cik is the cost of applying an
action to eliminate threat k∈ Ki in unit i∈ I. Similarly, we define
cm I

0
| | as a monitoring cost vector where cmi is the monitoring cost of

unit i∈ I in the management plan.
The spatial functionality is treated by minimizing the selected units,

thus achieving a greater connection of the protection areas. To re-
present it, we define ×d I I

0
| | | | as the vector of pair-wise distances

where di i,1 2 is the distance between units i1, i2 ∈ I, and cvi i,1 2 as the in-
verse of the square root of the distance between units i1, i2 ∈ I so that

=cvi i d
1
i i1 2
1 2

. Because we will particularly work on connectivity in a
freshwater conservation context, distances are measured along river
corridors forcing the inclusion of closer upstream areas (see Hermoso
et al., 2011). Complementary, a parameter β1 ∈ [0, 1] is defined as the
penalty factor associated to the spatial fragmentation of units, similar to
boundary length modifier (BLM) in Marxan and as the connectivity strength
modifier (CSM) in Cattarino et al. (2015).

As for conservation features, the local contribution, bis, of a given
unit i∈ I to the benefit of the species s∈ Si is proportional to the fraction
of threats k∈ Ks, that affect species s, for which an action is taken. Using
the presented notation, we have

=
=

b
K

K K
K K

K K
| |

, for | | 0

1, for | | 0.
i s

i s

i s

is

is
s

When there are co-occurrence between the species and its threats in an
unit (|Ki ∩ Ks| = 0), we assume that all actions (against threats) are
equivalent in terms of their relative contribution to local benefit.
Wherever this condition is not satisfied, bis is defined as 1, the max-
imum possible value equivalent to carrying out all possible actions on a
site for the benefit of a particular species. Whereas in any case, the
domain of bis ranges from 0 ≤ bis ≤ 1.

As for the exponent on the right-hand side of the formula (νs), it is
used for ensuring that only units where all threats affecting a given
species are addressed. In this way the probability of persistence of that
species would increase exponentially as we increase the number of
threats being addressed. To achieve this behavior, ν must have a value
greater than or equal to 1. Very high values can produce an undesirable
effect that forces all actions to be carried out so that there is a local
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benefit greater than 0, however, a positive values less than 1 implies the
opposite effect favoring a low total number of actions selected; while
negative values would produce this same effect, but with local benefits
greater than 1. To facilitate comparison with the approach used by
Cattarino et al. (2015), we set this parameter as νs = 3.

Finally, we define t S
0

| | as the representation targets vector,
where ts is the ecological contribution objective for each species s∈ S.

2.2. MIP model for the multi-action management planning problem
(MAMP)

We now formally specify MAMP, our proposed MIP model for the
multi-action management planning (or “prioritization”) problem. Let
x∈ {0, 1}|I|×|K| be a vector of binary variables such that xik = 1 if the
action against threat k∈ K in unit i∈ I is selected, and xik = 0 otherwise.
Likewise, let w∈ {0, 1}|I| be a vector of binary variables such that

=w 1i if unit i∈ I is taken as part of the management plan (i.e. it will be,
at least, monitored), and =w 0i otherwise. In addition, let z∈ {0,
1}|I|×|S| be a vector of auxiliary binary decision variables such that
zis = 1 if unit i∈ I contributes to the benefit of species s∈ Si given there
is an absence of threats to species s on unit i (|Ki ∩ Ks| = 0), otherwise
zis = 0. The purpose of this variable is to quantify the contributions to
the local benefit of a species that occur simply by selecting a unit as part
of the management plan (monitoring).

Having defined the variables, we can now rewrite the local benefit
function set above. In a unit i∈ I for a species s∈ Si, it is given by

=

=

b
x

K K
K K

z K K
| |

, for | | 0

, for | | 0,

k K K

i s
i s

i s

is

ik
3

is

i s

and therefore, the total benefit for a species s can be written as

= +
=

b
x

K K
z

| |
.s

i I K K

k K K

i s i I K K
i s

:| | 0

ik
3

:| | 0i s

i s
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Given that a solution is characterized by the vector of variables men-
tioned above, a particular solution of the model is encoded by a triplet
(w, x, z). In this way, the total cost function of such a solution (w, x, z),
is given by

= +C c x ww x z( , , ) cm ,
i I t K i I

i iik ik
i

i.e. the sum of the action costs plus the monitoring costs the manage-
ment plan. Note that in order to perform an action on unit i, it must first
be selected for monitoring. Similarly, the fragmentation function of
units of such a solution (w, x, z), is given by

=F w ww x z( , , ) (1 )cv .
i I i I i i

i i i i
:1 2 1 2

1 2 1 2

This expression is commonly found in mathematical conservation
models to represent the spatial aspects (Williams et al., 2005), does not
impose total connectivity of all of the units but rather allows a tradeoff
to be sought between the cost of implementing the management plan
and the degree of its fragmentation, as a way of improving the decision-
making process. More specifically, it penalizes the non-incorporation of
units with non-zero connectivity penalties, that is, units that are rela-
tively close to each other, also allowing the incorporation of asym-
metric relations between units (Beger et al., 2010). Given all of the
above, the model MAMP can be formulated as the following optimi-
zation problem;

= +

+
=

× ×

C F
x

K K
z

t
x K w

z S w

w* x* z* w x z w x z

w x z

MAMP*( , , ) min ( , , ) ( , , ) MAMP. 1

s. t. (
| |

)

, s S MAMP. 2
| | , i I MAMP. 3

| | , i I MAMP. 4

{0, 1} , {0, 1} , {0, 1} . MAMP. 5

i I Ki Ks

k Ki Ks

i s i I Ki Ks

s

k Ki
i i

s Si
i i

I I K I S

1

:| | 0

ik 3

:| | 0
is

ik

is

| | | | | | | | | |

The two concepts described above, the total cost and the fragmen-
tation of units, correspond to the objective function and are encoded in
(MAMP.1), where β1 is the penalty factor of fragmentation of units. In
cases where connectivity is not relevant, this factor is assumed to be 0.
As regards the restrictions, constraint (MAMP.2) ensures the re-
presentation target ts for each species is satisfied. This target can be
achieved directly by selecting units where the species is free of threats,
that is, where there are no co-occurrences between this species and its
threats (i.e., |Ki ∩ Ks| = 0), or by selecting units and actions that pro-
duce an equivalent sum of local contributions. The non-linear nature of
the benefit function (bis) is discussed later in this section. Constraint
(MAMP.3) imposes that for an action to be implemented in unit i∈ I,
that unit must be part of the management plan ( =w 1i ). In similar
fashion, constraint (MAMP.4) requires that for a unit i∈ I to contribute
to the objective for species s∈ Si, that unit must be part of the man-
agement plan ( =w 1i ). Finally, constraint (MAMP.5) defines the nature
of the variables.

Note that the multi-action assignment problem is structurally much
more complex than the commonly used planning problem involving a
single action (Wilson et al., 2007). In our model, the solution space in
the worst-case scenario (Ki = K, ∀i∈ I) is incremented from 2I to
(K+ 1)I, where K is the number of threats and I the number of planning
units. We therefore assume that the model should be limited to ad-
dressing a large number of threats in order to avoid the exponential
growth of the problem and the consequent difficulties in finding a good
solution (Moilanen, 2005).

Due to the model developed in Cattarino et al. (2015) and the
Marxan software both use heuristic solution approaches (simulated
annealing), the non-linearity of some of their components poses no
problem for the solution process, while in the case of linear program-
ming, the application of linearization methods is necessary. Specifically
in MAMP, both F(w, x, z) and bis are non-linear functions with respect
to variables, but with a different nature. On the one hand, F(w, x, z) is a
quadratic function given by a multiplication of binary variables, this
non-linearity can be addressed by induction of the so-called Boolean
quadratic polytope, used recently in the context of conservation plan-
ning by Beyer et al. (2016). A detailed description of this methodology
applied to our model is presented in the Appendix B. Moreover, bis is
nonlinear given by its cubic exponent, which is addressed by means of a
piece-wise function, that incorporates the creation of a new set of
variables and restrictions as well as a new parameter γ that indicates
the number of linear segments that the piece-wise function has. In this
sense, we use the strategy coded in the IloPiecewiseLinear function of
IBM ILOG CPLEX 12.6.3 while the explanation of this linearization
methodology is described in the Appendix B.

2.2.1. Extended MAMP model (MAMP-E)
To further address connectivity issues in our MAMP model, we ex-

tended it to also account for connectivity within management actions.
In this way, we define the fragmentation of units, we incorporate the
concept called fragmentation of action k, FAk(w, x, z), which calculates
the fragmentation within the same management action, it is given by

= x xw x zFA ( , , ) (1 )cv .k
i I i I i i

i k i k i i
:1 2 1 2

1 2 1 2

The introduction of this function seeks to improve management plans
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by grouping the units were a given action has been selected, so man-
agement actions are spatially coupled, achieving benefits through
economies of scale and greater efficiency in actions, reducing for ex-
ample the likelihood of re-infection. This function can be generalized
for all actions (FA(w, x, z)) in the form,

=w x z w x zFA( , , ) FA ( , , ).
k K

k

The incorporation of this function in our MAMP model generates a new
extended model, denoted as MAMP-E, which can be declared as follows:

= +

+

E C Fw* x* z* w x z w x z

w x z

MAMP *( , , ) min ( , , ) ( , , )

FA( , , ) (MAMP E. 1)
1

2

s. t. (MAMP. 2) (MAMP. 5), (MAMP E. 2)

where β2 ∈ [0, 1] is defined as the penalty factor associated to the
spatial fragmentation of actions, which has the same goal than β1 in
(MAMP.1). We assume equal importance in the connectivity of all ac-
tions. The idea behind this extended formulation is to determine the
impact on the solutions of the extended model's requirement to improve
connectivity not only between units but also between the actions taken
within them. Both models allow us to analyze the effect of connectivity
requirements on the costs as well as on the ecological benefits to the
species.

2.3. Solution comparison measures

To facilitate comparisons of the management plans produced by the
different parameters, a series of measures are defined and calculated for
each solution (w, x, z) generated. These measures are listed below.

Cost efficiency E(w, x, z): Defined as 1 minus the ratio of the total
cost function of the plan C(w, x, z) with respect to the maximum pos-
sible cost CT; note that CT is a fixed value and it corresponds to the cost
that would be incurred if all actions were implemented and all units
were selected for incorporation into the management plan, and is given
by +c cmi I k K i I iiki

:

= =
+
+

E C
C

c x w
c

w x z w x z( , , ) 1 ( , , ) 1
cm
cm

.
T

i I k K i I i i

i I k K i I i

ik ik

ik

i

i

(1)

Degree of connectivity of units DCU(w, x, z): Defined as 1 minus
the ratio of F(w, x, z)(β1), with respect to Fmax; where F(w, x, z)(β1)
corresponds to the fragmentation of units given by the penalty factor β1,
and Fmax corresponds to the maximum fragmentation of units found,
across all values of β1, using either MAMP, MAMP-E, the approach
proposed in Cattarino et al. (2015), or Marxan:

=

=

F
F

w w
F

w x z
w x z

DCU( , , ) 1
( , , )( )

1
cv (1 )

.i I i I i i i i i i

1

max

: ,

max

1 2 1 2 1 2 1 2

(2)

Degree of connectivity of action k DCAk(w, x, z): Defined as 1
minus the ratio of FAk(w, x, z)(β1, β2) with respect to (FAk−max); where
FAk(w, x, z)(β1, β2) corresponds to the fragmentation of action k for a
given penalty factors of β1 and β2, and FAk−max corresponds to the
maximum fragmentation of action k, across all values of β1 and β2,
using either MAMP, MAMP-E, the approach proposed in Cattarino et al.
(2015), or Marxan:

=

=
x x

w x z
w x z

DCA ( , , ) 1
FA ( , , )( , )

FA

1
cv (1 )

FA
.

k
k

k

i I i I i i i i i k i k

k

1 2

max

: , , ,

max

1 2 1 2 1 2 1 2

(3)

Average degree of connectivity of actions : Defined as the

average of the values of DCAk(w, x, z) with respect to the set of actions
K:

=
K

w x z
w x z

DCA¯ ( , , )
DCA ( , , )

| |
.k K k

(4)

Average benefit B w x z¯ ( , , ): Defined as the average value of the
benefit achieved across all species encoded by S:

=
( )

B
S

w x z¯ ( , , )
| |

.
s S

b
I| |

s
s

(5)

As can be seen, the degrees of connectivity are defined to be inversely
proportional to the corresponding fragmentation penalty factor (β1

and/or β2), in the same way, an inverse relationship also characterizes
the C(w, x, z) with respect to E(w, x, z).

2.4. Case study

We used the Mitchell River catchment in Northern Australia as a
case study to compare the model proposed here against two alter-
native approaches to multi-action planning already existing for the
catchment (see Cattarino et al., 2015). The area that spans over
71,630 km2, was divided into 2316 subcatchments or units planning.
The study focused on 45 freshwater fish species whose distribution
within the catchment is depicted in Fig. 1(a). Four major threats to
these species were considered: the water buffalo (Bubalis bubalis), the
cane toad (Rhinella marina), river flow alteration (caused by im-
poundments, channels for water extractions and levee banks) and
grazing land use (Cattarino et al., 2015, see][for further details). The
spatial distribution of these threats is also shown in Fig. 1(b). The two
subfigures further indicate that each sub-catchment has different
species and threat densities, demonstrating the need for an optimi-
zation model to design a multi-action management plan that is both
functional and economically efficient. Full information on the re-
lationships between these species and threats and the presence of each
one in the Mitchell River catchment may be freely accessed at https://
doi.org/10.6084/m9.figshare.1396588.v2 and https://doi.org/
10.6084/m9.figshare.1396587.v2, respectively.

2.5. Problem parameter values

Based on the parameters for the multi-action management planning
problem used by Cattarino et al. (2015), a number of parameters are
determined as detailed in Table 1. The cost parameters are set of
1[kUS]. This value is set to rule out the cost effect on the connectivity of
the resulting management plan. The representation target (ts) is set at
100 spatial units for each species. This guarantees the selection of at
least 100 planning units where there is a total contribution equivalent
to the choice of 100 units free of threats to that species. For those
species inhabiting fewer subcatchments, it is deemed necessary to select
all of the units where the species are found, thereby eliminating all real
threats to them.

The reader shall be aware that the non-linearity of bis was addressed
by means of a piece-wise linear function scheme. In such strategy, the
higher the number of linear segments (γ), the stricter the approximation
of the corresponding cubic function. Nonetheless, high values γ sig-
nificantly increase the resulting computational difficulty, yielding
higher computational times. Preliminary tests performed for different
values of γ showed that γ= 3 offered a suitable balance between
computational tractability and reasonable running times; so we set
γ= 3 across all analyses (Appendix C). Therewith, we can define

+m 1 as the set of breakpoints of the piece-wise function (note that
the number of breakpoints is one more than the number of linear seg-
ments), so if we consider breakpoints equidistant for γ= 3 and that the
domain of the cubic function is [0, 1], it is equivalent to specifying the
set of breakpoints as bpm = {0, 0.33, 0.66, 1}.
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Regarding the spatial functionality objective (connectivity), a range
of different penalty factors β1 ∈ {0, 0.2, …, 1, 1.5, 2, …, 12} were
tested. The limit is set to 12 because an increase in the beta factor, from
that value, does not add an improvement in the degree of connectivity
of the units (DCU). In the same way, the MAMP-E model is solved for a
broad range of penalty factors β2 ∈ {0, 0.2, …, 1, 1.5, 2, …, 12} and
using a fixed penalty factor of fragmentation of units, β1 = 0.8. This β1

factor was selected as the best trade-off between cost and connectivity
in the MAMP model. This exploration of beta values is carried out to
evaluate the relationship between the cost and connectivity, similarly
as done when calibrating the BLM in Marxan (see Ardron et al., 2008).

2.5.1. Experimental settings
The two proposed MIP models were written in the C++ pro-

gramming language (code available in Appendix D) and solved using
the CPLEX 12.6.3 solver with Concert Technology running on an Intel
Core i7-5820k 3.3 GHz 12-core processor with 32 GB of DDR4 RAM.
The solver was parameterized to stop once the execution time reached 6
hours (or earlier if an optimal solution was found). To improve the
solver performance, CPLEX polishing strategy was applied once a
20,000-second mark was passed. On the other hand, Marxan was run
with its default values (10 replicates and 106 iterations). The quality of
the solutions was measured using the gap criterion, defined as the
percentage difference between the relaxed (lower bound) and best
(upper bound) solutions found by CPLEX; hence, the lower the value of
the gap, the closer the solution of the optimal one.

A conceptual diagram of our multi-action prioritization approach is
displayed in Fig. 2. As can be seen from the figure, the first block
corresponds to the input data, whose blocks with dotted lines inside
indicate the data that is commonly used as input for the Marxan soft-
ware. With respect to the second block (settings), it is composed of
parameters specific to the model (β1, β2, γ, ν), whose selection or cali-
bration of values will be explained in the following section, and, the
parameters of the optimization solver, which include the strategies
followed for the search for better solutions (e.g. polishing strategy). The

Fig. 1. Spatial distribution of species richness (a) and species and threats (b) in the Mitchell River catchment, northern Australia. Darker colors show their richness
and number of threats respectively. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Parameters used in solving the MAMP and MAMP-E models.

Parameters Value

Monitoring cost (cmi, i∈ I) 1
Threat elimination cost (cik, i∈ I, k∈Ki) 1
Representation targets by species (ts, s∈ S) 100
Linearization breakpoints ( +mbp ,m 1) ∈{0, 0.33, 0.66, 1}
Penalty factor of fragmentation of units (β1) ∈{0, 0.2, …, 1, 1.5, 2, …, 12}
Penalty factor of fragmentation of actions (β2) ∈{0, 0.2, …, 1, 1.5, 2, …, 12}

Fig. 2. Conceptual scheme of the proposed framework.

J. Salgado-Rojas, et al. Ecological Modelling 418 (2020) 108901

5



third block includes the mathematical model (both MAMP and its ex-
tension), adding the transformations necessary to obtain a linear model.
The fourth block assumes the resolution of the model by means of an
optimization solver incorporating the adjustments previously estab-
lished, ending with the obtaining and comparison of results.

3. Computational results for MAMP and MAMP-E

Our experiments are aimed essentially at evaluating three funda-
mental aspects: (1) the tradeoff between the management plan cost-
benefit index and the degree of connectivity of units (DCU), the latter a
measure of the plan's spatial functionality, which is then compared to
the results obtained by Cattarino et al. (2015) and Marxan; (2) the
computational efficiency of the MAMP and MAMP-E models and (3) an
understanding of the behavior of the average benefit (B̄) generated by
the two formulations as the penalty factors β1 and β2 are increased.

The results obtained for the different parameters by the exact so-
lution method with the MAMP model are reported in Table 2, wherein
is observed that regardless of the imposed spatial functionality level,
the solutions are of high quality with an average gap of less than 1%.
The cost efficiency (E) clearly declines as β1 increases, reflecting an
increase in the number of actions and monitoring and treated units in
order to improve connectivity. Despite this increase in the degree of
connectivity of units (DCU), average degree of connectivity of actions
(DCA¯ ) and average benefit B( ¯) both remain relatively constant for any
given β1 value, which is explained by the constraint (MAMP.2), that
explicitly establishes the need to achieve the representation targets for
all species (ts).

On the other hand, the results obtained with MAMP-E are displayed
in Table 3. As can be seen, compared to MAMP the average gap is
greater, reaching a maximum of 3.77%. Regarding the average degree
of connectivity of the actions (DCA¯ ), its values are higher than for
MAMP due to this variable's greater importance in the extended model's

objective function. This higher connectivity was achieved at the ex-
penses of larger number of planning units under direct intervention.
Also, the behavior of this criterion when increasing the penalty factor
associated to actions (β2) is different for each threat, due particularly to
the threats’ respective spatial distributions. For example, the spatial
distribution of water buffaloes is small and centered in the lower region
of the Mitchell River catchment, while grazing is distributed throughout
the basin. The foregoing, because there is a more significant benefit
from minimizing the fragmentation of this latter threat, and therefore,
its DCA increases with increasing β2. While on the other hand, unlike
MAMP, the average benefit achieved for each species (B̄) increases with
β2, because more actions are being taken to improve within-actions
connectivity.

Regarding to the computation aspect, six hours of computation time
were enough for the MAMP model to achieve an optimality gap of less
than 1% at any connectivity functionality level. In comparison with
(Cattarino et al., 2015), whose heuristic needed 16 hours to attain a gap
of 3% (with regards to the bounds provided of the MAMP model), our
MIP approach attain an equivalent solution in an average of fewer than
1,000 seconds; this is a significant improvement in computational ef-
ficiency. The extended version, MAMP-E, managed to reach a 3% gap in
1,700 seconds; which is reasonable considering the larger size of the
problem that had to be solved.

The comparison of efficiency across different methods showed that,
for any degree of connectivity of units (DCU), the MAMP model out-
performs both (Cattarino et al., 2015) and Marxan, generating better
conservation action plans from the standpoint of cost as well as func-
tionality (Fig. 3(a)). As for MAMP-E, since it cannot be compared with
the two approximate methods, we only contrast it with MAMP. In this
way, we observe a relative decrease in the cost efficiency (E) for the
extended model as a growing number of spatially connected actions
increases the cost relative to unit connectivity (Fig. 3(b)). This tendency

Table 2
Results of MAMP model using exact solution methods. The rows from top to
bottom give the specific values generated for successively higher spatial func-
tionality requirements imposed by the complete range of penalty factors (β1) so
that the different solutions can be readily compared.

β1 Gap (%) E DCU DCA1 DCA2 DCA3 DCA4 DCA¯ B̄

0 0.1 0.87 0 0.47 0.36 0.51 0.23 0.39 0.4
0.2 0.19 0.87 0.21 0.47 0.53 0.56 0.39 0.49 0.41
0.4 0.23 0.86 0.32 0.47 0.6 0.56 0.44 0.52 0.41
0.6 0.52 0.85 0.52 0.47 0.59 0.6 0.45 0.53 0.41
0.8 0.67 0.85 0.57 0.47 0.58 0.57 0.43 0.51 0.41
1 0.87 0.85 0.58 0.47 0.58 0.56 0.43 0.51 0.41
1.5 0.89 0.84 0.66 0.47 0.56 0.59 0.41 0.51 0.41
2 1.07 0.83 0.71 0.47 0.55 0.57 0.39 0.49 0.41
2.5 1.03 0.81 0.78 0.47 0.46 0.54 0.36 0.46 0.42
3 0.95 0.8 0.79 0.47 0.46 0.55 0.35 0.46 0.42
3.5 0.98 0.79 0.84 0.47 0.44 0.53 0.34 0.44 0.42
4 1.09 0.77 0.88 0.47 0.42 0.55 0.3 0.43 0.41
4.5 0.87 0.76 0.9 0.47 0.4 0.52 0.3 0.42 0.42
5 0.91 0.75 0.91 0.47 0.41 0.52 0.29 0.42 0.42
5.5 0.84 0.74 0.92 0.47 0.36 0.5 0.25 0.39 0.42
6 0.81 0.74 0.92 0.47 0.37 0.51 0.26 0.4 0.42
6.5 0.78 0.74 0.93 0.47 0.35 0.51 0.27 0.4 0.41
7 0.78 0.74 0.93 0.47 0.37 0.53 0.27 0.41 0.41
7.5 0.75 0.74 0.94 0.47 0.35 0.51 0.26 0.4 0.41
8 0.83 0.7 0.97 0.47 0.36 0.51 0.26 0.4 0.41
8.5 0.86 0.7 0.97 0.47 0.35 0.52 0.26 0.4 0.41
9 0.85 0.7 0.98 0.47 0.37 0.53 0.25 0.4 0.41
9.5 0.81 0.7 0.98 0.47 0.36 0.52 0.24 0.4 0.41
10 0.81 0.7 0.98 0.47 0.37 0.53 0.25 0.4 0.41
10.5 0.81 0.7 0.98 0.47 0.36 0.52 0.26 0.4 0.41
11 0.77 0.7 0.98 0.47 0.37 0.53 0.26 0.4 0.41
11.5 0.8 0.7 0.98 0.47 0.36 0.5 0.25 0.4 0.41
12 0.79 0.7 0.98 0.47 0.36 0.53 0.25 0.4 0.41

1 = Water buffalo, 2 = Cane toad, 3 = River flow, 4 = Grazing.

Table 3
Results of MAMP-E model using exact solution methods. The rows from top to
bottom give the specific values generated for successively higher spatial func-
tionality requirements imposed by the complete range of penalty factors (β2)
with the penalty factor associated to the spatial fragmentation of units held
constant at (β1 = 0.8).

β2 Gap (%) E DCU DCA1 DCA2 DCA3 DCA4 DCA¯ B̄

0 0.66 0.85 0.57 0.47 0.58 0.57 0.43 0.51 0.41
0.2 0.75 0.85 0.56 0.47 0.63 0.67 0.54 0.58 0.42
0.4 1.26 0.84 0.56 0.51 0.68 0.67 0.59 0.61 0.43
0.6 0.99 0.83 0.56 0.51 0.76 0.68 0.64 0.65 0.44
0.8 1.16 0.83 0.57 0.53 0.78 0.71 0.67 0.67 0.45
1 1.25 0.81 0.6 0.4 0.81 0.7 0.69 0.65 0.45
1.5 1.44 0.8 0.64 0.4 0.81 0.71 0.72 0.66 0.47
2 2.66 0.78 0.67 0.25 0.83 0.68 0.74 0.62 0.48
2.5 2.79 0.77 0.7 0.25 0.83 0.68 0.76 0.63 0.49
3 3.71 0.76 0.7 0.25 0.84 0.69 0.77 0.64 0.5
3.5 2.98 0.71 0.78 0.25 0.87 0.64 0.83 0.65 0.54
4 3.82 0.69 0.78 0.2 0.88 0.66 0.83 0.64 0.55
4.5 2.12 0.67 0.81 0.2 0.9 0.64 0.85 0.64 0.55
5 2.59 0.64 0.83 0.17 0.91 0.63 0.86 0.64 0.57
5.5 2.58 0.6 0.86 0.17 0.93 0.64 0.89 0.66 0.59
6 3.38 0.59 0.88 0.17 0.92 0.63 0.91 0.66 0.6
6.5 2.57 0.52 0.92 0.17 0.96 0.56 0.93 0.65 0.65
7 2.16 0.52 0.92 0.17 0.96 0.56 0.93 0.65 0.65
7.5 1.97 0.52 0.92 0.17 0.96 0.56 0.93 0.66 0.65
8 2.52 0.51 0.92 0.17 0.96 0.56 0.94 0.66 0.66
8.5 1.84 0.51 0.92 0.17 0.96 0.56 0.93 0.66 0.66
9 1.92 0.51 0.92 0.17 0.96 0.56 0.94 0.66 0.66
9.5 2.34 0.5 0.93 0.17 0.96 0.56 0.94 0.66 0.67
10 2.68 0.49 0.93 0.04 0.96 0.54 0.94 0.62 0.68
10.5 2.86 0.44 0.94 0.04 0.96 0.43 0.94 0.59 0.69
11 3.33 0.45 0.94 0.04 0.96 0.5 0.94 0.61 0.7
11.5 3.77 0.47 0.94 0.04 0.96 0.52 0.94 0.61 0.69
12 3.13 0.44 0.95 0.04 0.96 0.43 0.95 0.59 0.7

1 = Water buffalo, 2 = Cane toad, 3 = River flow, 4 = Grazing.
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stems from the fact that the main objective of MAMP-E is the con-
nectivity of actions.

The spatial distribution of the actions selected by the MAMP model
when increasing the penalty factor associated to the spatial frag-
mentation of units (β1) shows a greater selection of units (thus in-
creasing connectivity), where much of these new units are selected for
monitoring (Fig. 4). This implies that the actions toward the most
populated threats have more and more freedom to move in order to
achieve this new spatial requirement, even assuming a higher cost of
the management plan. The movement of actions under the increased
requirement of connectivity is limited by the actions that must be
invariably carried out to achieve the target representation of scarce
species. On the other hand, for MAMP-E model, the spatial distribu-
tion of the selected actions by increasing the penalty factor associated
to the spatial fragmentation of actions (β2), shows the selection of
actions in units that have a greater number of threats, benefiting from
their spatial distribution.

When comparing the number of actions selected for each spatial
unit, Marxan always showed higher numbers and, therefore, higher
total cost per unit than the other tested methods (see Fig. 5). Moreover,
for three threats (cane toad, alterations in river flow, grazing), the
MAMP model is more efficient, than the other two tested methods, in
the use of actions when β1 > 0, and equally efficient when β1 = 0
(because it was in all cases the same solution). In the case of the water
buffalo, the MAMP model produces solutions that are not better than in
Cattarino et al. (2015). Allowing a greater balance between the other
actions (achieving more efficiency in them). Moreover, being the rarest
threat, the difference between the proportions does not imply the se-
lection of a significant number of new actions.

Regarding to the relationship between the average representation
objective achieved across species (B̄) and the respective costs of im-
plementing the management plan, we observe the following. Using the
MAMP model, there were no differences in the achievement of the
average representation objective among species by increasing the
penalty factor β1, while with the extended version MAMP-E, increases
in the penalty β2 generated an increase in the average representation

with approximately linear behavior (Fig. 6). Regarding the behavior of
the value of cost C, the two curves show that in both cases this factor
will increase if higher degrees of either type of connectivity are re-
quired. However, with MAMP at the highest penalty factor (β1 = 12),
the cost ratio as defined as C

CT
or 1 − E, is the same as for MAMP-E with

penalty factor of β1 = 0.8 and β2 between 3.5 and 4, but the ecological
benefit of the extended model is 31.24% higher.

4. Discussion

Guidance on how to explicitly and efficiently prioritize the man-
agement of multiple threats, including deciding where to act, is a de-
cision that has been studied by different authors (e.g., Cattarino et al.,
2015, 2016; Auerbach et al., 2015; Mantyka-Pringle et al., 2016), but to
our knowledge, the proposed approach is the first to include mathe-
matical programming to support these decisions. The use of an MIP
approach provides a new framework to the problem of prioritization of
the multiple actions, identifying efficient management plans to address
multiple threats to the conservation of species and lays a basis for the
development of more complex and realistic models to tackle a wide
range of resource management problems. One of the advantages of our
approach with respect to the already existing ones, is that it uses an
exact method that allows to quantify the quality of the action plans,
reaching in the case of study optimality gaps less than 1% for any level
of spatial functionality, in running times less than 6 hours. Specifically,
this MIP formulation has demonstrated three advantages over its
heuristic (simulated annealing) counterparts: shorter execution times,
higher quality solutions and a solution quality guarantee indicated by
the gap percentage. This is aligned with the recommendations regarding
the use of exact approaches over heuristics whenever possible as sup-
port for spatial conservation prioritization decisions (Beyer et al.,
2016). Because of the flexibility of MIP-based approaches, it is a rela-
tively simple matter to incorporate new constraints into the model,
modify its objective and perform a sensitivity analysis on the para-
meters so that the effects of changes in management plans can be
precisely measured. On the negative side, formulating a MIP problem

Fig. 3. Behavior of the cost efficiency (E) with respect to changes in degree of connectivity of units (DCU) for different solution methods used in multi-action
conservation prioritization models. The graph in panel (a) compares the proposed MAMP model with (Cattarino et al., 2015) and Marxan. The graph in panel (b)
compares the MAMP model with its extension, MAMP-E.
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often requires many variables and constraints, and as the resulting
model grows in size, execution times may increase exponentially. But
with advances in computer hardware, ever bigger problems can be
handled and we may assume that in future, large instances will be in-
creasingly manageable while heuristics will be able to find approximate
solutions to complex problems, including non-linear ones, without great
difficulty.

By identifying the specific actions needed to abate the threats af-
fecting target species at each site, our MAMP model achieved higher
efficiency in action management plans with respect to existing heuristic
approaches when connectivity between selected sites was important.
Our results align with those reported in Cattarino et al. (2015). This
higher efficiency was reflected in a lower proportion of actions to be
taken against three of the four threats studied, with water buffalo being

Fig. 4. Spatial distribution of actions selected by the MAMP and MAMP-E models. The management plans in (a), (c) and (e) were generated by different penalty
factors by fragmentation of units (β1) while those in (b), (d) and (f) were generated by different penalty factors by fragmentation of actions (β2).
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the only ones that obtained greater proportions. This result may be due
to a better balance between conservation actions, which, helped by the
low presence of this threat in the basin, implies that its higher pro-
portion does not considerably affect the efficiency of the management
plans achieved. From the spatial point of view, when the connectivity
requirement is zero, actions are guided by the distribution of scarce
species that are below the threshold of the representation target, in
addition to units with a high presence of species. While when the
connectivity requirement increases, it implies the selection of sites only
for monitoring, but no actions against threats are added in them. This is
because MAMP only incorporates connectivity in units, i.e., once the
target are achieved, additional units or sub-catchments are in-
corporated only to reduce fragmentation, with no further contribution
to target achievement.

The selection of units with no actions against threats assigned, is not
desirable because it might undermine the efficiency of solutions
(Cattarino et al., 2016). For this reason, accounting for connectivity
within actions is not only a novel element but also an important one. As
we report here, MAMP-E solutions, where connectivity within actions
was accounted for, obtained up to 31.24% more average benefit (B̄)
using the same resources, compared to solutions when connectivity
within the actions were not considered in MAMP. Differences in effi-
ciency between MAMP and MAMP-E increased with the strength of
connectivity within actions. We observed that MAMP-E outperforms
MAMP when it comes to benefits for different cost levels, also obtaining
a higher average degree of action connectivity (DCA¯ ), and reaching
degrees of unit connectivity (DCU) similar to those achieved by MAMP.
This characteristic of MAMP-E is the result of grouping management
actions rather than dispersing them over a wider area (Auerbach et al.,
2014); therefore, the model incorporates the generation of economies of
scale. The incorporation of economies of scale through the connectivity
of actions is an issue that had already been proposed by Cattarino et al.
(2018), but never directly demonstrated.

Fig. 5. Portion of the units where actions are implemented, with respect to the total number of selected units, for different values of BLM (boundary length modifier),
CSM (connectivity strength modifier) and β1 (unit fragmentation penalty factor).

Fig. 6. Level curves for the two proposed models showing the relationship
between average benefit (B̄) and the management plan cost ratio ( C

CT
) at dif-

ferent penalty factors (for MAMP, β1 (below the points); for MAMP-E, β2 with β1

fixed at 0.8 (above the points)).
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Although we have exposed the efficiency of our application ap-
proach in a freshwater context, the previous discussion demonstrates
that we have developed a powerful approach to decision-making for the
design and implementation of conservation management plans. So it
can be applied to other biodiversity features and in different biogeo-
graphic contexts, where multiple threats affect multiple species in dif-
ferent ways. For example, it could be adapted for maritime, terrestrial
environments, or the set of more than one them (Adams et al., 2014).
Likewise, the approach is flexible enough to incorporate the relative
importance of the connectivity of actions and selected sites as part of
the management plan, allowing it to be clear support for complex de-
cision making.

5. Conclusions

We have developed a new methodological approach based on
mathematical programming, which provides a more efficient frame-
work to address the problem of prioritization of multiple conservation
actions. Our approach is developed in a spatially explicit context that
makes it suitable for solving complex problems involving spatial aspects
of actions, and their impact on biodiversity. Comparing our MIP ap-
proach with the heuristic approach developed in Cattarino et al. (2015)
and Marxan, through a case study in Australia, an improvement in the
quality of the solutions is demonstrated, as in the resolution time. In
turn, we have incorporated a new expression of connectivity between
actions, through the extended model (MAMP-E), which results in more
efficient management plans regarding the model that only considers
connectivity between the units (MAMP). Regarding further develop-
ment of the proposed models, a natural extension would be to in-
corporate the possibility of non-dichotomous responses by the targeted
species to the implementation of a given conservation action. In other
words, the actions would be modeled so as to consider varying prob-
abilities of eradicating a given threat, rather than our simpler as-
sumption that every implemented action eliminates its targeted threat
completely. These further changes to the models could be taken a step
further by considering continuous levels of the actual implementation
of an action, with curves determining the species reactions at each
level.
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